If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+23x-14=0
a = 3; b = 23; c = -14;
Δ = b2-4ac
Δ = 232-4·3·(-14)
Δ = 697
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{697}}{2*3}=\frac{-23-\sqrt{697}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{697}}{2*3}=\frac{-23+\sqrt{697}}{6} $
| (2x+38)+(x+20)+3x=180 | | -3/4(5x+1)=-11/3-19/6 | | 4(x+5)^2=64 | | 10a-8a=16 | | 5−4x=39 | | 7x-3=8+4x | | (x-36)+28+x=180 | | 18d-15d=15 | | H-3.5=9h= | | -6t+16=-18 | | 15=2(q+4) | | 7x-3=8+4 | | 2c^2-7c=0 | | 2.4m=12 | | -7=3+2y | | -12-2x=-6(x+3) | | 5x-8=103 | | 4×z=32 | | X=36-y^2 | | 5=10÷c | | 4x+5+x+15=180 | | 2y-11+y+3=180 | | -f+2+-4f=8-3f | | 1/2x+2/3x+5/3x=3/5 | | -17+b/8=14 | | 17x+7=25x+5 | | x+3/8=7/10 | | -4x+3-3(x+1)=-(5x-1) | | 5x/6-3=2/3+4x/9 | | 3x+4x-3=180 | | 2u/5+u/4=9/5+3/20 | | x+20=-4x-14 |